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Abstract

Successful application of physics-based protein-structure prediction methods depends on sophisticated computational approaches to

global optimization of the conformational energy of a polypeptide chain. One of the most effective procedures for the global optimization of

protein structures appears to be the Conformational Space Annealing (CSA) method. CSA is a hybrid method which combines genetic

algorithms, essential aspects of the build-up method and a local gradient-based minimization. CSA evolves the population of conformations

through genetic operators (mutations, i.e. perturbations of selected geometric parameters, and crossovers, i.e. exchange of selected subsets of

geometric parameters between conformations) to a final population optimizing their conformational energy. Implementation of the CSA

method with the united-residue force field (UNRES, in which each amino-acid residue is represented by two interaction sites, namely the

united peptide group and the united side-chain) was enhanced by introducing new crossover operations consisting of (i) copying b-hairpins,

(ii) copying remote strand pairs forming non-local b-sheets, and (iii) copying a-helical segments. A mutation operation, which shifts the

position of a b-turn, was also introduced. The new operations promote b-structure, and are essential for searching the conformational space

of proteins containing both a- and b-structure; without these operations, excessive preference of a-helical structures is obtained, even though

these structures are high in energy. Parallelization of the CSA method has also been enhanced by removing most of the synchronization steps;

the improved algorithm scales almost linearly up to 1,000 processors with over 75% average performance.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The theoretical prediction of three-dimensional struc-

tures of proteins from a knowledge of only its amino acid

sequences is a formidable task [1–3]. All physics-based

computational methods for determining protein structure are

based on Anfinsen’s thermodynamic hypothesis, viz. that

the native fold adopted by a polypeptide corresponds to its

free energy minimum [4]. Given an amino acid sequence

and a fast and accurate approximation of the free energy

function, the goal of physics-based protein structure

prediction methods is to find the global minimum of this

function, which should correspond to the native structure

within the applied approximations. Reliable de novo

protein-structure prediction depends on both an adequate

approximation of the free energy function, whose global

minimum corresponds to the native fold, and an optimiz-

ation algorithm that consistently finds that global minimum.

This article concentrates on an improvement of the

optimization algorithm, and will not discuss in detail the

problem of designing an optimal approximation of the free

energy function for protein-structure prediction, which is

covered elsewhere [5–8].
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Physics-based protein-structure prediction falls into a

general and large category of global optimization problems,

i.e. problems that involve finding the global minimum or

maximum of a target function. All scientific and engineering

disciplines have many important problems that fall into this

category, and there is a wide range of global optimization

algorithms. The difficulty in global optimization of poly-

peptides arises from the very large conformational space of

any reasonable size polypeptide, its high dimensionality,

and a ruggedness of this conformational space, i.e. a large

number of local minima separated by large barriers. One of

the principal limitations impeding successful application of

physics-based protein-structure predictions has been time

lack of a fast, sophisticated computational approach to

global optimization of the conformational energy of a

polypeptide chain [1–3]. Most optimization algorithms can

be divided roughly into two classes: stochastic and

deterministic algorithms. Monte Carlo (MC) based stochas-

tic global optimization methods should be distinguished

from the MC methods which are designed to generate a

Boltzmann ensemble rather than to identify a single

conformation corresponding to the global minimum.

Numerous stochastic approaches have been used to attack

the global optimization problem in protein structure

prediction. MC search [9], simulated annealing [10,11],

optimal-bias MC minimization procedure [12,13], MC-

stochastic dynamics hybrid [14], torsional flexing [15],

catalytic tempering [16], multicanonical jump walking [17],

lattice model MC [18], tabu search [19], multiple time step

MC [20]. Among the stochastic global optimization

algorithms developed in our laboratory for physics-based

protein-structure prediction are MC based algorithms (MC

with minimization, MCM [21,22]; electrostatically driven

MC, EDMC [23–25]; conformation-family MC, CFMC

[26]), and genetic algorithms (Conformational Space

Annealing, CSA [27–30]). Several deterministic methods

have been applied to protein structure prediction: imaginary

time Schrödinger equation smoothing [31], packet anneal-

ing [32], aBB [33], low-mode search [34], top-down free-

energy minimization [35]. Among the deterministic

methods, we have studied the build-up method and various

deformation-based methods (the diffusion-equation method,

DEM [36–38]; the distance-scaling method, DSM [39]).

Some methods are hybrids between deterministic and

stochastically based methods: the self-consistent basin-to-

deformed-basin mapping (SCBDBM) [40] method com-

bines deformation with MC search, and the integrated

hybrid method [41] combines aBB and CSA.

At present, one of the most effective procedures for

the global optimization of protein structures appears to

be the CSA method [27–30]. CSA is a hybrid method,

which combines genetic algorithms, essential aspects of

the build-up method and a local gradient-based minimiz-

ation. The method is based on the idea of CSA: in the

early stages, it enforces a broad conformational search

and then gradually focuses the search into smaller

regions with low energy. CSA is designed to search

over extremely broad ranges of conformational space,

generating numerous local minima before arriving at the

global-minimum free energy conformation. Therefore, the

CSA searching method allows one to calculate many

different groups of low-energy protein structures, one of

which is presumably the native structure. CSA was first

applied [27,28] to global optimization of peptides

containing up to 20 amino acid residues using all-atom

models and the ECEPP/3 force field [42]. At present,

CSA is also our principal method for optimizing the

united-residue (UNRES) energy in our hierarchical

procedure for protein-structure prediction [43,44].

Genetic algorithms [45], or more general evolution-

ary algorithms, are based on theories of biological

evolution and natural selection. As with any genetic

algorithm, CSA evolves the population of possible

solutions through genetic operators (mutations and

crossovers) to a final population, optimizing a pre-

defined fitness function. To improve the quality of the

solution, and to speed up convergence, CSA incorpor-

ates local minimization into an evolutionary algorithm.

Such a hybrid approach possesses both the global

character of genetic algorithms and also the fast

convergence of local searches. In other words, a hybrid

approach makes a better tradeoff between the compu-

tational cost and the extensiveness of the conformation-

al search. In stochastic MC-based methods, the

efficiency depends strongly on a good set of moves

that produce a relatively high acceptance ratio, while

favoring a broad search of conformational space.

Similarly, the efficiency of a genetic algorithm can be

enhanced by carefully designed recombination operators.

In this article, we present new genetic operators

designed for treating b-structures more efficiently.

Also, changes in parallel implementation of CSA

which greatly improve scalability will be discussed.

2. Methods

2.1. The UNRES force field

In the UNRES model [5–7,46–48], a polypeptide

chain is represented by a sequence of a-carbon (Ca)

atoms linked by virtual bonds with attached united side-

chains (SC) and united peptide groups (p). Each united

peptide group is located in the middle between two

consecutive a-carbons, with peptide group pi being

located between Ca
i and Ca

iþ1: Only these united peptide

groups and the united side-chains serve as interaction

sites, the a-carbons serving only to define the chain

geometry (see Fig. 1 of reference [46]). All virtual bond

lengths (i.e. Ca–Ca and Ca–SC) are fixed; the distance

between neighboring Ca’s is 3.8 Å corresponding to

trans peptide groups, while the side-chain angles (aSC
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and bSC), and virtual-bond ðuÞ and dihedral ðgÞ angles

can vary. The energy of the virtual-bond chain is

expressed by Eq. (1).

U ¼
X
i,j

USCiSCj
þ wSCp

X
i–j

USCipj
þ wel

X
i,j21

Upipj

þ wtor

X
i

UtorðgiÞ þ wtord

X
i

Utordðgi;giþ1Þ

þ wb

X
i

UbðuiÞ þ wrot

X
i

UrotðaSCi
;bSCi

Þ

þ
XNcorr

m¼2

wm
corrU

m
corr ð1Þ

The term USCiSCj
represents the mean free energy of the

hydrophobic (hydrophilic) interactions between the side-

chains, which implicitly contains the contributions from

the interactions of the side-chain with the solvent. The

term USCipj
denotes the excluded-volume potential of the

side-chain – peptide-group interactions. The peptide-

group interaction potential ðUpipj
Þ accounts mainly for

the electrostatic interactions (i.e. the tendency to form

backbone hydrogen bonds) between peptide groups pi

and pj: Utor; Utord; Ub; and Urot represent the energies of

virtual-dihedral angle torsions, double torsions, virtual-

bond angle bending, and side-chain rotamers; these

terms account for the local propensities of the polypep-

tide chain. Details of the parameterization of all of

these terms are provided in earlier publications [46,47].

Finally, the terms Um
corr; m ¼ 1; 2;…Ncorr are the

correlation or multibody contributions from a cumulant

expansion [48] of the restricted free energy (RFE), and

the w0s are the weights of the energy terms. The

multibody terms are indispensable for reproduction of

regular a-helical and b-sheet structures. The UNRES

force field has been derived as an RFE function of an

all-atom polypeptide chain plus the surrounding solvent,

where the all-atom energy function is averaged over the

degrees of freedom that are lost when passing from the

all-atom to the simplified system (i.e. the degrees of

freedom of the solvent), the dihedral angles x for

rotation about the bonds in the side-chains, and the

torsional angles l for rotation of the peptide groups

about the Ca· · ·Ca virtual bonds. This approach enabled

us to derive the multibody terms Um
corr; m ¼ 1; 2;…;Ncorr

by a generalized cumulant expansion of the RFE

developed by Kubo [49]. The internal parameters of

the individual U 0s were derived by fitting the analytical

expressions to the RFE surfaces of model systems [48]

or by fitting the calculated distribution functions to

those determined from the PDB [47], while the w0s (the

weights of the energy terms) were calculated by

optimization of the energy gap between the lowest-

energy native-like conformation and the lowest-energy

non-native conformation ðDEÞ and the Z-score (Z;

defined as the difference between the mean energy of

the native-like structures and the mean energy of the

non-native structures divided by the standard deviation

of the energy of the non-native structures) of the

training proteins [5,6,47].

DE ¼ min
i[nat

Ei 2 min
i[non2nat

Ei ð2Þ

Z ¼
ð1=NnatÞ

PNnat

i¼1 Ei 2 ð1=Nnon2natÞ
PNnon2nat

i¼1 Eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=Nnon2natÞ

PNnon2nat

i¼1 E2
i 2 ð1=Nnon2natÞ

PNnon2nat

i¼1 Ei

h i2
r

ð3Þ

The force field is able to predict the structures of

proteins containing both a-helical and b-sheet structures

with a reasonable degree of accuracy, as assessed by

tests on model proteins [30,50,51] as well as in the

CASP3 [30,52,53], CASP4 [50], and CASP5 blind

prediction experiments.

2.2. The conformational space annealing method

The CSA algorithm [27–30] is summarized below

because the details of its implementation are necessary for

Fig. 1. Illustration of the old and new crossover and mutation operations.

Conformations of the bank (which are to be copied) are on the left, while

seed conformations (whose conformations are to be replaced) are on the

right of the upper parts of each panel. The copied residues of the bank

conformations are marked by solid circles, while the residues of the

structure to be replaced are marked by open circles. The resulting trial

structure is shown on the lower part of each panel. The residues of the

resulting trial structure retain all of the original seed conformations except

that the replaced residues come from the bank structure. (a) Single residue

transfer (operations O1 and O2Þ; (b) transfer of the variables of a number of

consecutive residues (operation O3Þ; (c) transfer of a b-hairpin (operation

O4Þ; (d) transfer of a non-local pair of b-strands (operation O5Þ; (e) transfer

of an a-helical fragment (operation O6Þ; (f) shift of a b-turn (operation O7Þ:
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the discussion of new genetic operators and the redesign of

its parallel implementation. The CSA method begins with a

randomly-generated population of conformations which are

energy minimized to generate the first bank of confor-

mations. The first bank is meant to represent a sparse

sampling of the conformational space that captures short-

range interactions. From the initial population, a number of

conformations (called seeds) are selected as parents for the

trial population. These ‘seed’ conformations are altered in a

non-random fashion to create new trial conformations. As in

any genetic algorithm, the trial population is generated by

the use of genetic operators: mutations and crossovers.

Unlike traditional genetic algorithms, the mutation operator

applied in CSA does not change the value of the selected

variable randomly; instead, it uses values of the correspond-

ing variables in the initial population (the first bank) or in

the current population of conformations as a pool of random

numbers. A copy of the first bank is used as a source of

‘random’ variables, which are not uniformly distributed, but

their distribution is determined by intramolecular inter-

actions at this stage determined mainly by steric overlap.

The crossover operators copy a set of variables, representing

a continuous segment of the polypeptide chain of various

size taken from a randomly selected conformation in the

current population, to a selected parent conformation (seed).

This is described in detail in Section 2.3. Attention is paid to

assure that all trial conformations are significantly different

from each other and from parent conformations. After

generation, all trial conformations are energy minimized.

The next step of the CSA algorithm is the update of the

current population (the bank) without increasing its size.

Each trial conformation is compared to each existing

conformation of the bank. If the trial conformation is

similar to an existing conformation of the bank, only the

lower-energy conformation out of these two is preserved. If

the trial conformation is not similar to any existing

conformation in the bank, it represents a new distinct region

of conformational space. Then it replaces the highest-energy

conformation in the bank, if its energy is lower than the

highest energy in the bank, otherwise it is discarded. The

distance between conformations i and j is defined as the

difference of their virtual-bond angles and virtual-bond

dihedral angles [Eq. (9) of Ref. 52]. If the distance, Dij; is

less than or equal to some predefined cutoff value, Dcut;

conformations i and j are considered similar, otherwise they

are considered different. CSA achieves its efficiency by

beginning with a large value of Dcut to essentially search all

possible structures, and then gradually reduces (‘anneals’)

Dcut by reducing the minimum distance between the

conformations of the bank and focusing the search in low-

energy regions of conformational space. After updating the

current population, the seed conformations are selected

from the set of conformations not selected as seeds

previously; in addition, attention is paid to cover the

conformational space as broadly as possible by selecting

conformations not similar to each other as seed

conformations.

2.3. Introducing new crossover operators

As mentioned in Section 2.2, the crossover operations

copy some variables from randomly selected conformations

of the bank to the corresponding variables of the seed

conformations. In the version of the CSA method used in the

CASP3 experiment [30,43], the following operators were

applied:

O1: Exchange of backbone or side-chain variables of a

single residue. Residue i is selected at random and

either the backbone (gi; ui) or the side chain (ai; and bi)

variables are copied from the selected bank confor-

mation to the selected seed conformation.

O2: Exchange of all variables of a single residue. This

operation differs from that of O1 by exchanging all

variables (gi; ui; ai; and bi).

O3: Exchange of the variables of n consecutive residues.

The variables of residues from i1 to i2; where 2 ,

i2 2 i1 , n=3; n being the number of residues in the

molecule, are copied from the selected bank

conformation to the selected seed conformation.

A schematic representation of the operations described in

O1–O3 is shown on Fig. 1(a) and (b). These operations are

sufficient to search the conformational space of proteins

with simple topology. However, it can easily be demon-

strated that operation O3 introduces a strong bias towards

structures with efficient short-range interactions, i.e. the a-

helices (see Section 3.1 for a numerical demonstration of

this fact). Suppose we have a 20-residue a-helical segment

in the bank conformation which is to be copied. Then, if we

copy a 10-residue fragment, the number of ways in which at

least a five residue a-helical fragment is included is 11 (the

number of 10-residue helical segments of the 20-residue

helix) þ5 (the number of helical segments at least five

residues long including the amino terminus of the 20-

residue helix and the residues preceding it) þ5 (the number

of helical segments at least five residues long including the

carboxy terminus of the 20-residue helix and the residues

following it) ¼ 21. If we have a 20-residue b-hairpin in the

structure which is to be copied, the number of 10-residue

fragments with at least one b-hairpin peptide–peptide

contact (corresponding to the middle b-turn) is 7, i.e. three

times smaller than the number of fragments with a helical

segment of at least five residues. Therefore, this recombina-

tion scheme includes a strong bias towards a-helical

structure even for simple combinatorial reasons. Moreover,

elements of b-structure are stabilized by long-range

interactions and, thereby, formation of the sufficiently

regular structures with optimal interactions is more difficult

compared to the stabilization of a-helices with short-range

interactions.

C. Czaplewski et al. / Polymer 45 (2004) 677–686680



To overcome this undesirable bias, we introduced two

new crossover operations which copy portions of the b

structure:

O4: Transfer of a single b-hairpin. The bank conformations

are analyzed for the presence of b-hairpins (see Section

2.4). If a b-hairpin is detected in a bank conformation,

the corresponding variables are transferred to a

selected seed conformation.

O5: Transfer of a pair of remote interacting b-strands. The

bank conformations are analyzed for the presence of

remote strands forming b-sheets. If such a pair is

found, a pair of remote interacting strands is selected

and the contacts between these strands are transferred

to the seed conformations. This is accomplished as

follows:

1. The variables describing the geometry of the two strands

are copied from the bank structure to the seed structure.

2. A local minimization of a simplified potential-energy

function containing a harmonic penalty for the preser-

vation of the contacts between the copied strands, defined

by Eq. (4), is carried out in the variables that do not

correspond to well-defined secondary structure of the

original seed structures or to the copied strands.

V ¼
X

ij

~USCiSCj
þ wel

X
ij

~Upipj
þ wSCp

X
ij

~USCipj

þ wtor

X
i

UtorðgiÞ þ wtord

X
i

Utordðgi; giþ1Þ

þ wb

X
i

UbðuiÞ þ wrot

X
i

Urotðai;biÞ

þ wdis

X
i[s1;j[s2

ðdCa
i

Ca
j
2 dCa

i
Ca

j
8Þ2 ð4Þ

where ~USCiSCj
; ~Upipj

; and ~USCipj
are ‘soft-sphere’ [54]

versions of the USCiSCj
;Upipj

; and USCipj
potentials, in

which the Lennard–Jones-like potential is replaced with

the function defined by Eq. (5), and s1 and s2 denote the

first and the second copied strand, respectively, dCa
i

Ca
j

is

the distance between Ca
i and Ca

j in the trial conformation

and dCa
i

Ca
j
8 is the corresponding distance in the structure

from the bank from which the fragment is copied.

U ¼

1
4
ðr2

ij 2 rij8
2Þ for rij , rij8

0 otherwise

(
ð5Þ

with rij being the distance between the interacting sites

and rij8 being the collision distance.

3. Local minimization of the UNRES energy function of

Eq. (1) supplemented with the distance constraints

corresponding to the contacts between the all Ca-atoms

of the copied strands is carried out with the same

conditions as in point 2.

4. Local minimization of the UNRES energy function of

Eq. (1) supplemented with the distance constraints

corresponding to the contacts between the Ca-carbon

atoms of the copied strands is carried out with variation

of all geometric parameters of the chain.

5. Unrestricted optimization of the UNRES energy function

of Eq. (1) is carried out.

An example in which a non-local fragment of b-structure

is copied is shown in Fig. 2.

The reason for using the complex procedure described in

points 2–5 is that unrestricted local minimization of the

UNRES energy function supplemented with interstrand

distance constraints typically destroys the secondary

structure already present in the seed structure, because

there are many clashes between the interacting sites after

copying a strand pair. Freezing the variables corresponding

to fragments with well-defined secondary structure, with

initial use of a ‘soft-sphere’ long-range interaction potential,

facilitates the removal of the worst overlaps in step 2. The

overlaps are further released in step 3 when the full UNRES

energy function is applied; however, the variables corre-

sponding to segments with well-defined secondary structure

are still frozen. In step 4 all geometric parameters are

varied; however, the distance constraints to maintain the

introduced b-sheet are still imposed; these constraints are

released in step 5, which produces a relaxed hybrid

structure. It should be stressed that the restraints are

imposed only temporarily to enable copying non-local

elements of geometry, but the whole process is analogous to

copying a contiguous part of the chain in operation O3.

Apart from the operations described above, that copy

portions of b-structure, we introduced the following

O6: Copying an a-helical structure from a bank to a seed

conformation. This is accomplished as in operation 3:

the bank conformations are scanned for the presence of

a-helices and a randomly selected a-helix is copied in

the corresponding place of the sequence of the seed

conformation.

O7: A mutation operator, which shifts the turn of a b-hairpin

Fig. 2. Example of a hybrid structure (c) generated by transfer of a non-local

pair of interacting strands from a bank conformation (a) to a seed

conformation (b). The copied strands are marked by thick lines and selected

target contacts between the strands are marked by dashed lines.
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of a selected seed conformation by ^2 residues.

This operation facilities the correcting of misplaced

b-turns, which otherwise would be difficult to

accomplish.

A schematic representation of the new crossover

operations is shown in Fig. 1(c)–(f).

2.4. Recognizing secondary structure

To recognize secondary structure, we adopted the

procedure used in our dipole-path method to reconstruct

an all-atom backbone from the Ca trace [55,56] using the

following algorithm

1. The electrostatic-contact map between peptide groups is

constructed. Two peptide groups are in contact, if their

average electrostatic-interaction energy computed from

Eq. (5) of Ref. [57] is less than the cutoff value DEcut; we

use Ecut ¼ 20:3 kcal=mol for peptide groups separated

by more than three Ca· · ·Ca virtual bonds and Ecut ¼

20:5 kcal=mol for peptide groups separated by three

virtual bonds. A contact between peptide groups pi and pj

means that either Ca
i is close to Ca

j and Ca
iþ1 is close to

Ca
jþ1; if the segments of the chain consisting of peptide

groups pi and pj are parallel, or Ca
i is close to Ca

j21 and

Ca
iþ1 is close to Ca

j ; if they are antiparallel.

2. An a-helix is defined in segment Ca
i –Ca

j ; if the following

two conditions hold

(a) Every peptide group in the segment is in

electrostatic contact with its third neighbor.

(b) 108 , gk , 808 for all i , k , j: This condition

eliminates left-handed helices.

3. A b-hairpin is defined in segment Ca
i –Ca

iþ2k21 if, for

every i # j , i þ k peptide group, pj is in electrostatic

contact with peptide group p2ði þ k 2 1Þ2 j:

4. Two strands from Ca
i to Ca

iþk and from Ca
j to Ca

jþk form a

parallel b-sheet, if peptide group pl; where i # l , i þ k;

is in electrostatic contact with peptide group pjþl2i:

5. Two strands from Ca
i to Ca

iþk and from Ca
j to Ca

j2k form

an anti-parallel b-sheet if peptide group pl; where i #

l , i þ k; is in electrostatic contact with peptide group

pj2lþi:

2.5. Improving scalability of the CSA algorithm

Any global optimization method, including CSA, applied

to protein-structure prediction, typically requires a huge

computational effort. Even the fastest processors available

are not fast enough to carry out these kinds of computations

in real time. To solve this problem, the CSA method takes

advantage of massively parallel computing. The CSA

algorithm can be divided into two parts: the algorithmic

part described above and local minimization of trial

conformations, the latter being the most computationally

intensive. Parallelization by a master/worker approach, in

which the master executes only the algorithmic part of CSA

while minimization of trial conformations is distributed to

all workers, has been described in detail in our earlier work

[44]. In brief, the master generates a number of trial

conformations and sends them one by one to the worker

processors for local minimization; a current conformation is

sent to the first node, which is not busy with local

minimization at the moment. After all trial conformations

are sent, all processes are synchronized, until all energy-

minimized conformations are returned to the master

processor. Because local minimizations take very different

CPU time depending on the conformation, synchronization

violates load balancing. This violation depends strongly on

the ratio of the number of trial conformations to the number

of processors; about 80% efficiency is achieved when this

ratio is 10:1 which, however, impairs massive paralleliza-

tion of the algorithm (e.g. with typically 600 trial

conformations, good scalability can be expected only up

to 60 processors) [44]. In practice, the scalability of the

algorithm has been far from perfect, reaching 43% on 100

processors and 200 trial conformations [44].

To improve the load balancing, we eliminated the

synchronization step. The new algorithm consists of the

following steps.

1. At the beginning of the procedure, the master generates a

number of random conformations, which are sent to the

workers for local minimization. This step is completed

when all conformations have been energy-minimized

and therefore synchronization does take place here.

2. In a given iteration, the master generates a number of

trial conformations (it has to be greater than the number

of worker processors). The conformations are sent to the

worker processors for local minimization; however, the

master concludes the iteration as soon as all trial

conformations have been sent. The conformations that

are still not returned will be collected in the next

iteration.

3. The collected energy-minimized conformations (both

from the current iterations and from the previous

iterations returned in the current iteration) are used to

update the bank. If a pre-defined total number of

conformations has already been generated and energy

minimized, the procedure stops and the remaining

conformations are collected in the final synchronization

step; otherwise, the procedure returns to step 2.

3. Results and discussion

3.1. Significance of b-structure copying operations in

searching the conformational space

Our test case was the 61-residue IgG a þ b protein (PDB

code: 1IGD [58]). This protein consists of N- and the C-

terminal hairpins packed together to form a parallel b-sheet
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and the middle a-helix packed against the b-structure (Fig.

3). This protein was one of the toughest tests of the UNRES

force field, because a very small change of force-field

parameters results in a dramatic change in the structure of

the lowest-energy conformation. Also, the conformational

search with the UNRES force field proved particularly hard

for this protein.

Using our hierarchical method of force-field optimization

[7], we recently managed to obtain a ‘caldera-like’ force

field by optimizing the UNRES potential using 1IGD as the

benchmark protein [59]. The lowest-energy structure of

1IGD in this force field has all three native secondary

structure elements with proper packing of b-hairpins into a

parallel b-sheet (Fig. 4(c)). The ‘caldera-like’ property

means that the search goes quickly to the global minimum,

because there is a strong negative energy gradient with

increasing degree of native-likeness.

Fig. 5 compares the time course of two CSA runs

with different settings, and representative structures of

these runs are shown in Fig. 4. In the first run, no b-

sheet-promoting operations were included while, in the

second one, these operations were added (operations 3

and 4 of Section 2.3). In the first run, the resulting

lowest-energy structure is a three-helix bundle (Fig. 4(a)),

regardless of the fact that the native-like a þ b structure

is about 25 kcal/mol lower in energy than this structure.

The second lowest-energy structure contains the C-

terminal b-hairpin (Fig. 4(b)), but the N-terminal part

is folded into an a-helix. When the b-hairpin moves are

added, the lowest-energy structure is a native-like

structure (Figs. 4(c) and 5(b)).

As shown in Fig. 5(a), structures with the N- arid the C-

terminal b-hairpins already appear early in the run that does

not include the new b-structure-promoting operations.

However, initially, they have substantially higher energy

Fig. 3. Native structure of the 1IGD protein. The N-terminal hairpin, a-

helix, and the C-terminal hairpin are colored green, red, and blue,

respectively.

Fig. 4. (a) The lowest-energy structure obtained in the CSA run without

including b-sheet transfer operations ðE ¼ 2285:5 kcal=molÞ; (b) the

second-lowest energy structure in that run ðE ¼ 2284:8 kcal=molÞ; (c)

the lowest-energy structure (native-like) obtained in the run with inclusion

of b-sheet transfer operations ðE ¼ 2308:7 kcal=molÞ:

Fig. 5. Plots of the lowest energy of structures with native secondary-

structure elements obtained during the course of the CSA simulations with a

‘caldera-like’ UJNRES force field without (a) and with (b) inclusion of b-

sheet transfer operations vs. the number of minimizations. Solid line:

energies of structures with N-terminal hairpin; dashed line: energies of

structures with middle a-helix; dotted line: energies of structures with a C-

terminal hairpin. When b-sheet transfer operations are included (part b) the

lowest-energy structure has all three elements after less than 10,000 energy

minimizations.
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than structures with a-helices formed in place of b-hairpins,

because it is easier for an a-helical fragment to attain an

optimal geometry, compared to a b-hairpin that is stabilized

by long-range contact, which has a lower entropy of

formation. Moreover, as mentioned in Section 2.3, the

chance that a b-sheet fragment will be copied from a bank

conformation containing b-structure is significantly lower

than the probability of copying an a-helical fragment from a

bank conformation containing a-helical structure. Thus, the

original version of CSA method contains a significant bias

towards forming a-helical structure.

The tendency of the original CSA method to falsely

promote a-helical structure is even better illustrated in our

second example. In this example, we used a version of the

UNRES force field from an early stage of optimization on

1IGD; this force field locates the native-like structure in CSA

runs, but the lowest-energy structure is a fullb-sheet structure.

The time course of the CSA runs is shown in Fig. 6. The three-

helix bundle is the lowest-energy structure if no b-sheet-

promoting operations are included (Fig. 7(a)). When these

operations are included, the lowest-energy structure is a fullb-

sheet (Fig. 7(b)) with almost the same energy as the three-helix

bundle. This b-sheet structure has quite short range contacts,

as all strands that are consecutive in sequence are packed

together with each other. Introduction of more b-sheet-

promoting operations leads to a b-sandwich-like structure

(Fig. 7(c)) with more than 20 kcal/mol lower energy. It is

interesting to note that the lowest-energy structure with long-

range contacts between the N- and C-terminal b-strands (Fig.

7(d)) is attained only when a copy of a non-local b-sheet is

included (operation O4 of Section 2.3).

3.2. Improving scalability of the CSA algorithm

Fig. 8 compares the speedup of the original CSA

algorithm with synchronization, after generating and

minimizing new conformations with the parallel implemen-

tation introduced in this work. Frequent synchronization

causes substantial deterioration of the performance with an

increase in the number of processors. The speedup of the

original parallel CSA algorithm depends strongly on the

ratio of the number of trial conformations to the number of

processors. The scalability curves for CSA runs with 50,

100, 200, and 400 trial conformations generated per

iteration (Fig. 8(a)) show almost linear scaling amounting

to 80% of the maximum speedup for a number of processors

equal to 5, 10, 20 and 40, respectively; however, the

speedup goes down for more processors. Removing

synchronization in the new algorithm results in linear

scaling up to 80 processors with only 200 trial confor-

mations generated per iteration. This allows massively

parallel computations, as CSA scales with 75% average

efficiency until up to 1,000 processors (Fig. 8(b)) with only

1,100 trial conformations generated per iteration.

4. Conclusions

In this work we have proposed an improvement of the

CSA method, applied to the UNRES force field to treat

proteins with b- as well a-structure. We introduced two new

crossover operations, which copy b-hairpins or fragments of

b-structure composed of remote strands. These new

operations are essential in a conformational search of

proteins containing both a and b structure; without

including them, the system is likely to end up in an a-

helical conformation despite the fact, that this conformation

is high in energy. This is caused by the fact that, in the

original implementation of CSA, contiguous segments of

Fig. 6. Plots of the lowest energy vs. the number of minimizations during

the course of the CSA simulations with an UNRES force field that gives an

incorrect all-b structure as the global minimum of 1IGD: (a) no b-structure-

transfer moves included; (b) some b-hairpin-transfer moves included; (c)

more b-hairpin-transfer moves included; (d) b-hairpin and non-local b-

structure-transfer moves included.

Fig. 7. (a)–(d) The lowest-energy structures corresponding to runs (a)–(d)

of Fig. 6. The energies are 2289.4 kcal/mol, 2290.1 kcal/mol,

2311.8 kcal/mol, and 2317.3 kcal/mol, respectively.
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Fig. 8. (a) Comparison of the speedup of the old parallel implementation of the CSA algorithm, with synchronization after each CSA iteration with 50 (S), 100

(W), 200 (A), and 400 (K) trial conformations generated per iteration, with the speedup of the new implementation (X and heavy line). The dashed lines

correspond to 50, 60, 80, and 100% of the theoretical efficiency, respectively. (b) Scalability plot of the new CSA algorithm in massively parallel computations.

(W): average efficiency (averaged over all iterations); (K): peak efficiency.
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the structure are copied; this impairs the transfer of

segments of b-sheet structures, while it does not impair

the transfer of a-helical structure.

The new operations can be generalized to copying more

than two-strand portions of b-structures and portions of

supersecondary and tertiary structure, such as the helix–turn–

helix motifs, zinc finger a/b motifs, etc. as well as to

transferring established patterns of side-chain contacts. Work

on this is in progress in our laboratory. We have also removed

excessive synchronization from the parallel implementation

of the CSA algorithm. Synchronization is now carried out only

after the first bank of conformations is generated and upon

termination of the procedure. The new algorithm scales almost

linearly up to 1,000 processors with 75% average efficiency.
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